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Let us consider a non-linear conservative free oscillator

x(#sign(x) f (x)"0, x3R, (1)

where f (x) is even and a su$ciently smooth function. When f (0)"0, the
characteristic of oscillator (1) is at least a continuous odd function, and hence,
solutions of the di!erential equation must possess at least two continuous
derivatives. If f (0)O0, the characteristic has a step-wise discontinuity at zero
x"0. In this case, the function x (t) will have the only "rst continuous derivative at
those instants of time t for which x(t)"0, and the equality in equation (1) has to be
understood correctly in terms of distributions. In this letter, a one-parametric
(except time translation) family of periodic solutions will be constructed. Then,
taking into account that the system admits the group of time translations,
tPt#t

0
, the second arbitrary parameter will be introduced, and the general

periodic solution obtained.
First, let consider the special case of the piece-wise constant characteristic, when

f (x),1 and the di!erential equation (1) takes the form [1]

x(#sign(x)"0. (2)

Since either x("!1 or x("1 for the positive and negative co-ordinate x,
respectively, an exact analytical piecewise continuous solution can be obtained by
matching the two parabolas over the one period of vibration with a future periodic
extension of the solution on all in"nite-time regions [2]. In order to get a &&single
function'' solution, basically the Fourier series of the periodic solution [2] was
proposed in recent work [3]t. It should be noted that the Fourier series form gives,
in principal, an approximate solution since it is impossible to account for the
in"nite number of terms. As long as one can keep &&any number of terms'', the above
remark is not so important for the smooth time histories. However, it becomes very
important when dealing with either a discontinuous function x(t) or its
sOn leave from Technology and Chemistry University of Ukraine.
tIt has not been explained how to expand function sign (x) into the Fourier series with respect to

time t, before solution x (t) is known.
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discontinuous derivatives. It is known that the trigonometric series appear to be
&&bad working'' around the discontinuities due to the Gibbs phenomenon (see for
instance reference [4, p. 602]). In terms of acceleration, the series performs an
oscillating error near those points of time t at which the acceleration x( (t) has the
step-wise discontinuities switching its value from !1 to 1 or back as it is dictated
by equation (2).

A closed-form analytical solution will be obtained below by making use the
simplest version of the saw-tooth transformation of time (STTT) [5]. A special
feature of the solution is that it does not involve any trigonometric series at all, and
at the same time it is expressed by a &&single function''.

The basic step of the STTT consists of introduction of a new time parameter q as

x (t)"X(q), q"q(ut), (3)

where u is an arbitrary parameter q is a periodic saw-tooth function which is given
by one of the two equivalent expressions,

q(m)"G
m,

!m#2,
!1)m)1,
1)m)3,

q (m)
∀m
"q(m#4), (4)

q(m)"
2
n

arcsin sin
nm
2

. (5)

The amplitude and the period of the function q(m) ( Dq (m) D)1) are normalized in
such a manner that the expression

Dq@ (m)]2"1 (6)

holds at least for almost all m3(!R, R).
Function q(m) can be called a saw-tooth sine and viewed as a standard elementary

periodic function by both physical and mathematical treatments [5].
On the next step, substituting representation (3) into the di!erential equation (2),

one obtains

u2
d2X
dq2

#sign(X)"0,
dX
dq K q"$1

"0, (7)

where expression (6) has been taken into account, the boundary conditions are used
to eliminate the singular term u2(dX/dq)qA (ut) from the expression for second
derivative, x( (t). This term includes the Dirac functions and has to be eliminated
since x( (t) can only have step-wise discontinuities.

Conserving a generality (see the result below), we seek a solution such that the
co-ordinate X (q) is negative when q is negative, and X(q) is positive when q is
positive, and else X(!q)"!X(q). In this case due to the continuity one has
X(0)"0. Under these conditions the boundary value problem (7) is split into the
two subproblems, respectively,

d2X
dq2

"u~2, X D q/0
"0,

dX
dq K q/~1

"0 (8)
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and

d2X
dq2

"!u~2, X D q/0
"0,

dX
dq K q/`1

"0. (9)

The solutions of problems (8) and (9) are found, respectively, as

X"u~2(q#q2/2) and X"u~2(q!q2/2).

These can be represented in a single expression form,

X"u~2Cq!sign(q)
q2
2 D , q"q(ut). (10)

The period is ¹"4/u, and the amplitude value is given by x
.!9

"X(1)"u~2/2.
Instead of the arbitrary parameter u the parameter of amplitude could be used.

So expression (10) gives a one-parameter family of solutions. As was meantioned
above, the second arbitrary parameter, say t

0
, can be introduced into the solution

by replacing q (ut)Pq (u(t#t
0
)). This means the general solution of equation (2)

has been obtained.
Now consider the oscillator of a more general form (1). In this case, equations (8)

and (9) should be modi"ed as

d2X
dq2

"u~2f (X) and
d2X
dq2

"!u~2f (X) (11)

under the same boundary conditions as the ones in equations (8) and (9)
respectively.

Equations (11) cannot be solved so easily as equations (8) and (9). However
taking into account that the new temporal variable q is bounded as Dq D)1, one can
obtain the solutions iteratively in a power series from with respect to q. First, one
should replace the function f (X) by its truncated Maclaurin's series with respect to
X. Then one can seek solution in the power series form

X"Aq#c
2
q2#c

3
q3#c

4
q4#c

5
q5#2 .

A constant term of the series has been omitted due the boundary condition
X(0)"0. In the iterative process, the coe$cient A will remain unknown and play
the role of an arbitrary constant. All other coe$cients, c

2
, c

3
,2 , are determined

by the standard way after substitution the series into the di!erential equations and
collecting the terms of the same power of q. Note that due to the symmetry, one can
obtain a solution for the second of the two equations (11) only. To make it valid for
both equations, one should multiply all terms involving even degrees of the series
by the function sign(q) as it has been done in the particular case (10). A reason of this
step is to provide the symmetry, X(!q)"!X(q). The "nal result is

X"Aq#
Af (0) f A (0)q5

40u4

!sign(q) C
f (0)q2
2u2

#

A2f A(0)q4
24u4 D#O (q6), (12)

q"q(u (t#t
0
)),
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where the parameters A and u are coupled by the boundary condition at q"1 (or
q"!1) as

A!

f (0)
u2

!

A2f A(0)
6u4

#

Af (0) f A(0)
8u4

"0. (13)

In equation (13), all terms generated by the terms O(q6) in equation (12) have been
neglected.

It is seen that solution (12) includes two independent arbitrary constants, t
0

and
either A or u. Note that the parameter A gives a certain estimation for the
amplitude of vibration, but it is not the exact amplitude (a correct value of the
amplitude is given by x

.!9
"X(1)). In addition, the parameter u is not a regular

(trigonometric) frequency of the the oscillator because of the special normalization
of the period or the saw-tooth sine, q(m). The trigonometric frequency, u

trig
, is

calculated by equating the periods, ¹"4/u"2n/u
trig

. However, algebraic
relation (13) can play a certain role in the non-linear frequency response.

Let us give the "nal remarks. Representation (3) in applicable in many other
cases of oscillating systems as well. However, it is important to note that the above
transformation of time, tPq, is not invertible over all periods of motion and hence
representation (3) is not always correct. For example, let us assume that the
di!erential equation x(#f (x, xR )"0 possesses a periodic solution (the limit circle).
In this case, representation (3) is applicable if function f (x, xR ) includes only even
powers of xR . In fact, due to equation (6), the even powers are functions of q, whereas
odd powers are not: xR 2n"u2n (dX/dq)2n, xR 2n~1"u2n~1(dX/dq)2n~1q@(ut)
(n"1, 2,2 ). For any periodic motion, a more general, two-components form of
the representation [5] should be used.
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